氮化镓半导体发展前景如何?

访客2023-12-03 04:24:1325

硅基氮化镓半导体材料相比碳化硅基氮化镓及砷化镓,在实际案例中,目前还没有被广泛应用,但是因为性能优异,所以以后有望普及。 例如相比碳化硅基的氮化镓,硅基的氮化镓比碳化硅基的氮化镓在线性度上有不同的显现,可对基站的复杂信号进行数字调制。 在产能上,碳化硅基由于材料特性,不支持大的晶圆,而硅基氮化镓材料支持大晶圆的特性,有利于电路的扩展和集成,未来有可能在相关领域取代碳化硅基。 另外相比砷化镓,氮化镓拥有高一些的饱和功率,所以当作低噪声放大器使用时,适合雷达等应用领域,可以省略掉限幅器,限幅器的主要作用就是防止高功率干扰信号对放大器带来损失。所以简化的系统噪声系数会好于砷化镓,除此之外混频器等应用中,更好的动态范围也比砷化镓合适。 综合以上所述,从某些方面来说,硅基氮化镓半导体材料有一定优异性,未来有望被广泛应用。

几天前举办的一场小米10发布会,成为了今年电子行业的一个激活器,5G上下游产业链信心被提振,一系列技术被正式推向了商用进程,骁龙865、LPDDR5内存、WiFi 6等,还有一款配件产品就是普及率非常低的氮化镓充电器。

在小米10新品发布会上,小米创始人雷军详细介绍了氮化镓(GaN)充电器,作为一种新型的半导体材料,氮化镓做出来的充电器体积非常小,充电效率却特别高,因此这次推出的小米氮化镓65W充电器比标配的65W充电器体积要小一半。

为什么使用氮化镓能够缩小体积呢?作为第三代半导体材料,氮化镓相比硅材料有着成倍的性能提升,带来的优势就是比硅更适合做大功率的器件,体积更小的前提下,功率密度还能够更大,相比旧式慢速硅技术加快了20倍,功率高出3倍。

因此氮化镓技术成为了下一代技术突破的关键,在技术不断实现突破、价格变低之后,氮化镓将能够成为最重要的半导体材料,从而使行业产生巨大变革。因此在小米发布氮化镓65W充电器之后,整个产业都发生了巨大的变化。

氮化镓相关概念股瞬间大涨,A股相关上市公司中,三安光电、士兰微、华微电子和海特高新均实现了大涨,21只个股今日(2月17日)市值累计增加292亿。至于小米发布的氮化镓充电器,技术方案源自纳微半导体,此前小米早已投资该企业,为这次合作埋下伏笔。

过去几年里,小米的产业链投资一直都有业务战略性,是为了追求反映未来趋势的创新技术,而并非单纯的财务投资,这次推出的氮化镓充电器同样具有行业风向标的意义,堪称是一项“黑科技”技术的普及。

氮化镓作为一种纯人工合成的材料,对设备要求苛刻,技术上也异常复杂,由于技术受限而导致产能非常低,因此氮化镓单晶材料非常的昂贵,2英寸售价便高达2万多。但这次小米将氮化镓充电器定在了149元,创下了行业新低,而且是首个将氮化镓USB PD快充单独零售的手机企业。

小米的这一举动,无疑拉低了整个氮化镓充电器产业链的生产成本,小米对这个行业的巨大贡献,也因此反应到了产品上,这款产品的官方商城预约页面已经有多达6万人预约,意味着整个行业将会迎来新的突破点,相信这项技术未来将会成为手机行业的标配。

(责编: admin)

控制面板

您好,欢迎到访网站!
  查看权限

最新留言